Mind Lake SDK
  • Overview
  • Get started
    • Tutorial step-by-step
    • TypeScript Quick-Start
    • Python Quick-Start
  • Use Cases
    • 1-Single User with Structured Data
    • 2-Single User with UnStructured Data
    • 3-Multi Users with Permission Sharing
  • Glossary
  • TYPESCRIPT API REFERENCE
    • MindLake
    • MindLake.DataLake
    • MindLake.Cryptor
    • MindLake.Permission
    • Return Code
  • PYTHON API REFERENCE
    • MindLake
    • MindLake.DataLake
    • MindLake.Cryptor
    • MindLake.Permission
    • Return Code
Powered by GitBook
On this page
  • Preparation
  • Source Code
  • Execution Output
  1. Get started

Python Quick-Start

This page aims to give a quick start example on how to use Mind Lake via Python SDK.

PreviousTypeScript Quick-StartNextUse Cases

Last updated 1 year ago

  • Demos on how to connect a lake, create a table, encrypt data, and insert and query encrypted data.

  • You can check out for more advanced functions.

Preparation

If you need to configure Python local environment, please visit our step-by-step tutorial for Python:

Source Code

'''
Python Quick Start
pip install MindLake
copy env-template.py into env.py and replace with your own details
'''

import env
import mindlakesdk

# 1. connect to MindLake, '5' is example of Goerli Testnet chainID
chainID = '5'
mind = mindlakesdk.connect(env.walletPrivateKeyAlice, env.appKey, chainID)
assert mind, mind.message

# 2. create a table
result = mind.datalake.createTable('test_table_enc',
        [
            mind.datalake.Column('id', mind.DataType.int4, False),
            mind.datalake.Column('token', mind.DataType.text, True)
        ])
assert result, result.message

# 3. encrypt data
result = mind.cryptor.encrypt('USDT','test_table_enc.token')
assert result, result.message
encryptedTokenName = result.data

# 4. insert encrypted data
result = mind.datalake.query(f"""INSERT INTO test_table_enc (id, token) 
VALUES (1, '{encryptedTokenName}')""")
assert result, result.message

# 5. query encrypted data
result = mind.datalake.query("SELECT token FROM test_table_enc")
assert result, result.message
print(result.data['columnList'][0])
for row in result.data['data']:
    result = mind.cryptor.decrypt(row[0])
    assert result, result.message
    print(result.data)

Execution Output

token
USDT

Python API Reference
https://github.com/mind-network/mind-lake-sdk-python/blob/main/tutorial/README.mdgithub.com